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Abstract 

Linear recurring binary sequences with pseudonoise properties may be gener- 
ated by shift registers with linear (logic) feedback. An r-stage linear FSR is 
characterized by an rth degree polynomial in one indeterminant, with coefficients 
taken from a field of two elements. The two-tap r-stage linear FSR characterized 
by an rth-degree primitive trinomial over GF(2) is the most efficient generator in 
terms of implementation of a PN sequence. Primitive trinomials do not exist, 
however, for every value of r. 

This paper deals with a search for rth-degree tetranomials through degree 34 
which contain either an r - lth-degree or an r - 2th-degree primitive polynomial 
over GF(2) as a factor. The tetranomials characterize a three-tap r-stage linear 
FSR capable of generating PN sequences of length 2"l- 1 or P2- 1 when 
properly initialized. 

A primitive trinomial does not exist of degree r - 1 equal to 8,12,13,14,16,19, 
24,26,27,30, and 32. Tetranomiah of degree r do exist, however, which contain 
as a factor a primitive polynomial of degree r - 1 for each of the preceding values 
of r-1 except 12. 
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Pseudonoise Sequence Generution With Three-Tup 
Linear Feedback Shift Registers 

1. Introduction up-1 1 mod p (2) 

A. Irreducible Polynomials over GHp) and Finite Fields 

The integers, 0,1, - 1 . )  p - 1, where p is prime, form a 
field under the binary operations of addition and multi- 
plication modulo p .  The field is termed a Galois field of 
p elements (Ref. 1) and is denoted as G F ( p ) .  

for any integer a+O mod p. Thus (2) holds for every 
nonzero element of GF(p) .  This is a well-known theorem 
of Fermat (Ref. 2). The multiplicative order of each non- 
zero ai E GF(p) is the least integer n for which 

Consider polynomials in one indeterminant whose co- 
efficients are taken from the field G F ( p ) .  Such a poly- 
nomial f(x) of degree m > 1 is irreducible over G F ( p )  if 
it cannot be expressed f ( x )  = g(x) h(x), where g(x )  and 
h(x) are polynomials over G F ( p )  of degree less than m. 
The set of polynomials 

where ai E G F ( p )  form a field. The binary operations are 
addition (of two polynomials) modulo f ( x )  and multipli- 
cation (of two polynomials) modulo f ( x ) ,  where f (x )  is 
irreducible over G F ( p )  and of degree m. This is termed 
a Galois field of p" elements and is denoted as GF(p"). 
An irreducible polynomial over G F ( p )  plays a role an- 
alogous to that of the integer p in forming a field. Every 
abstract finite field is of order p", where m 2 1 and is 
isomorphic to a GF(p"). 

The nonzero elements of G F ( p )  form a cyclic multi- 
plicative group of order p - 1. Furthermore, 

aT=lmodp (3) 

The order of ai divides the order of the multiplicative 
group. That is, n divides p - 1. This is a consequence of 
Lagrange's theorem (Ref. l), which states the order of a 
subgroup divides the order of the group. An element ai 
with order n = p-1 is defined as a primitive element 
of G F ( p ) .  Every G F ( p )  contains cp(p - 1)  primitive ele- 
ments, each of which is a generator of the cyclic multi- 
plicative group. The Euler phi-function cp(n) (Ref. 2) is 
the number of integers no greater than the integer n that 
are relatively prime 'to n. The evaluation of cp(n) is as 
follows : 

I 1 for n = 1 

p - 1  for n = p a prime 
k k 

pie-1 ( p i  - 1) for n = p p  I .  z.=1 i=1  

c p ( 4  = 
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An irreducible polynomial f(x) over G F ( p )  has a as a 
root such that #(a) = 0. If f ( x )  is of degree m, am may be 
expressed as 

112-1 
a m  = - ai ai 

i=O 
(4) 

Furthermore, the elements of the field ( 1 )  may be ex- 
pressed as 

6 + u I ~  + a * *  + am-1 am-l 

The field G F ( p )  is termed the ground field and GF(p") 
as shown in (5) is known as the extension field of degree 
m over GF(p) .  

(5)  

The nonzero elements of GF(p") form a cyclic multi- 
plicative group of order pm-1.  Also as in (2), 

for any nonzero element yi(,a) of the extension field 
GF(p^).  The multiplicative order of each nonzero ele- 
ment of GF(pm) divides pm - 1. An element yi(,a) with 
order n = pm- 1 is defined as a primitive element of the 
extension field GF(p"). Every extension field GF(pm)  
contains q(p" - 1)  primitive elements, each of which is a 
generator of the cyclic multiplicative group. 

If a is a root of an mth degree irreducible polynomial 
f ( x )  over GF(p) ,  then ap, aP2, - e * ,  aPm-' are also roots of 
f(x). Furthermore, all the roots have the same multi- 
plicative order. The period of an irreducible polynomial 
f ( x )  over G F ( p )  is defined as the order of its roots. Equiv- 
alently, the period of f ( x )  is the least integer n for which 
f ( x )  divides xn-1.  Note that a is a root of x n - 1  since 

(7) urn 1 mod f (a )  

where n is the order of a. Thus f (x)  must be a factor 
of xn-1. 

Whenever a root of f ( x )  is a primitive element of the 
extension field GF(p"), f ( x )  is defined as a primitive 
polynomial over G F ( p )  and has a period of n = pm-1 .  

The period of any polynomial g(x)  over G F ( p )  is the 
least integer n for which g ( x )  divides xn - 1. If g ( x )  is 
irreducible but not primitive, n is less than p m  - 1 and n 
divides pm-1.  If g ( x )  is primitive, n equals pm-1 .  When 
g(x) is reducible, n is a number-theoretic function of the 
periods of its irreducible factors over G F ( p )  (see Sec- 
tion I-B). 

Fig. 1. An r-stage h e a r  feedback 
shift register 

B. linear Feedback Shift Registers and 
Polynomials over GF(2) 

The (binary) linear logic feedback shift register (FSR) 
shown in Fig. 1 has been investigated in considerable 
detail (Ref. 3). The state of the ith two-state memory 
element at clock pulse interval (CPI) k is denoted as 
ak+ The behavior of the FSR can be characterized by 
the linear recurrence relationship. 

The bit fed back at CPI k is denoted as ab. The ith 
stage contributes to the feedback when the Boolean 
multiplier ci is at state-value 1.  The summations are 
taken modulo 2, and e, a Boolean constant, is 0 for mod 2 
summing (EXCLUSIVE-OR) or 1 for the complement of 
mod 2 summing (NOT EXCLUSIVE-OR). 

The cycle length or periodicity of {a&} for a given 
initial state can be determined from its generating func- 
tion (Ref. 3) 

For e = 0, 

1 + ci xi 
i =1 

(9) 
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where ai is the initial state of the ith stage. For e = 1, The initial state 00 - - - 0 results in gl(x) = 1, and 

~~~ 

0 0 0 0 1 1  1 1 1 0 0  
1 1 0 0 0 1  0 1 1 1 0  
2 1 1 0 0 0  0 0 1 1 1  
3 0 1 1 0 1  1 0 0 1 0  
4 1 0 1 1 0  0 1 0 0 1  
5 0 1 0 1 0  1 0 1 0 1  
6 0 0 1 0 0  1 1 0 1 1  

c 

G:(x) = 

The generating functions G;(x) and GZ(x) are the ratios 
of two polynomials over GF(2) and may be expressed as 

The characteristic polynomial fe(x) is a function of the 
feedback connections only. The length of longest FSR 
cycle(s) is the least integer n for which f&) divides 
x" + 1. (Note that -1 1 mod 2.) This is precisely the 
period of fe(x). 

The polynomial ge(x) is a function of the initial state 
of the register and the feedback connections. The degree 
of g,(x) is always less than that of fe(x). An initial state 
ala, ai, which results in a g&) that is relatively 
prime to f e ( x )  will lie on a cycle whose length is n the 
period of fe(x). An initial state that yields a g,(x) that has 
a common factor with fe(X) will lie on a cycle whose 
length divides n. Thus all cycle lengths of an FSR with a 
characteristic polynomial fe(x) divide n the period of f e (X ) .  

1 G;(x) = 

Each of these initial states lies on a cycle of longest pos- 
sible length. 

Example 1. Consider ak = ak-, + abz + ab4. The initial 
state a, a-, a3 a, of 0001 lies on a cycle of longest length 
represented by 

1 - -- 1 
1 + x + x2 + x4 fo(x) 

G4,(x) = 

= 1 + x + x 3 + x T + x *  + x 1 0 +  

The coefficients of x correspond to the bits in the recur- 
ring sequence {&} whose period is 7: 

k 0 1 2 3 4 5 6  

Uk 1 1  0 1 0  0 0 

The 16 states of the four-stage FSR lie on four disjoint 
cycles. They are tabulated as follows, with ak-4 denoted 
as ai: 

0 1 0  0 0 0 0 1 1 1 1 1  

The initial state 00 - - 01 results in go@) = 1, and 
The four disjoint cycles correspond to the four recurring 
sequences (1101000), ( O O l O l l l ) ,  (0), and (l), with periods 
7, 7, 1, and 1, respectively. The period of the longest 
cycle(s) corresponds to the period of fo(x). 
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The period of a polynomial can be determined from 
the period of its irreducible factors. The period of a re- 
peated irreducible factor is determined as follows: If 
+(x) is irreducible over GF(2) and has period n, then 
+(.> I x" + 1 

Also, 

(x" + 1 ) 2  = xm + 1 

and, by induction, 

Therefore, 

[+(x)]8 I (x" + 1 ) 2 +  = x2'" + 1 

where 2$-l < s 2$, and the period of [+(x)la is 2%. 

The period of 

is 

where LCM denotes the least common multiple. 

In example 1, 

fo(x)  = (1 + x) (1 + x2 + x3) 
The periods of the irreducible factors are 1 and 7. The 
period of fo(x)  is LCM (1, 7) or 7. 

Example 2. Consider ak = 1 4- ak-1-k ab2 ab4. The 
initial state a-, a-2 a-3 a4 of 0000 lies on a cycle of longest 
length represented by 

1 
(1 + x) (1 + x + x2 + x4) G:(x) = 

1 - - 
(1 + x)2(1 + x2 + x 3 )  

The period of f , (x )  is LCM [2* 1,7] or 14. The 16 states 
of the four-stage FSR lie on two disjoint cycles: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 0 0 0  1 
1 0 0 0  0 
0 1 0 0  0 
0 0 1 0  1 
1 0 0 1  1 
1 1 0 0  1 
1 1 1 0  1 
1 1 1 1  0 
0 1 1 1  1 
1 0 1 1  1 
1 1 0 1  0 
0 1 1 0  0 
0 0 1 1  0 
0 0 0 1  0 

0 1 0 1  1 
O i l 0  1 1 0  0 

The two disjoint cycles correspond to the recurring 
sequences (10011110110000) and (10). 

The numerator of G";x) in example 2 for an arbitrary 
a-4 is gl(x) = (1 + a-, + a-, + U-+l)i+ initial state a-, a-, 

+ a-, e. For the initial state 0101, 
( a 2  + a - 3  + a-,) x + (a, + a -2  + a3) x2 + @-, + K2) x 3  

g1(x) = 1 + x2 + x 3  
and 

which corresponds to the recurring sequence (10). 

C. Tables of Irreducible Polynomials over GF(2) 

In 1953 Gilbert (Ref. 4) determined values of a and b 
which guaranteed the primitiveness or the imprimitive- 
ness of trinomials 1 + + xb through degree b = 31. 
There were many values of a and b for which primi- 
tiveness was not proved or disproved. Marsh's tables 
(Ref. 5 )  contain all the irreducible polynomials over GF(2) 
and their respective periods through degree 19. Golomb, 
Welch, and Hales generated two tables of trinomials 
over GF(2). One table contains the irreducible factors of 
each trinomial of degree 5 36 together with the period 
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of each trinomial and of each irreducible factor. The 
second table contains the factor of lowest degree for 
trinomials of degree 37 through 45. These tables appear 
in Ref. 3. Peterson's tables (Ref. 6) contain information 
about every irreducible polynomial over GF(2) of degree 
5 16. A primitive polynomial with a minimum number of 
terms and an irreducible polynomial corresponding to each 
possible period is given for every degree from 17 through 
34. Watson (Ref. 7) lists one primitive polynomial over 
GF(2) for every degree from 1 through 100. Zierler and 
Brillhart (Ref. 8) have generated -two tables. One table 
contains a complete list of every irreducible trinomial 
over GF(2) for every degree from 2 through 1000. The 
known primitive entries are noted. The second table con- 
tains the periods of some of the imprimitive polynomials. 

Consider the sequence { a k }  of period 2'- 1 generated 
by an r-stage FSR having a primitive rth-degree charac- 
teristic polynomial. This is a maximal-length FSR se- 
quence which has three properties of randomness (Ref. 3). 
It is, therefore, frequently termed a pseudonoise or PN 
sequence. Applications of PN sequences include ranging, 
error detection and error correction coding, prescribed 
sequence generation, counting, scaling, and secure com- 
munications. The primitive trinomial characterizes the 
FSR of least complexity in terms of feedback combina- 
tional logic capable of generating a PN sequence. 

The number of primitive polynomials of degree r is 
known to be (Ref. 3) 

The primitive polynomials are a subset of the irreducible 
polynomials. For degree r, the number of irreducible 
polynomials is : 

where the sum is extended over all divisors d of r. The 
Mobius number-theoretic function p(d)  (Ref. 2) is defined 
as follows: 

1 for d = 1 

0 when a21d and a > 1 

(-1)k for d = plpz pk 

Note that hz(r) and q2(r)  are equal in the case when 2'- 1 
is prime. (These are known as Mersenne primes; to date, 
the first 23 have been determined,) 

Because of the large magnitudes of &(r) and q,z(r) for 
even modest values of r, the search for irreducible poly- 
nomials of high degree has been restricted to trinomials. 

Unfortunately, there are many values of r for which 
an irreducible trinomial of degree r does not exist. 
Furthermore, there are values of r for which irreducible 
but not primitive trinomials of degree r exist (Refs. 3,8,9). 

II. Tetranomials over GF(2) of Degree r with 

A. Search Technique 

A 34-stage FSR was constructed to operate at a clock 
frequency of 1 MHz. Provisions were made to alter its 
length, insert any predetermined initial state, and feed 
back the modulo 2 sum (EXCLUSIVE-OR) or the 
complement of the modulo 2 sum (NOT EXCLUSIVE- 
OR) of the content of the stages i, /, and r, where r 
denotes the last stage and i < i < r .  A word detector 
(effectively an r-input gate) was used to sense and 
"remember" the initial state. By means of control logic, 
the initial state is inserted, the word detector primed, the 
clock initiated, and the clock terminated when the FSR 
is returned to its initial state. The foregoing sequence 
of events yields a count of the number of clock pulses 
required for an FSR to return to an initial state. The 
count is equivalent to the length of the cycle containing 
the initial state. 

Periods of 2'-' - 1 or 2'-' - 2 

B. Theorems 

The linear recurrence relationships (i.e., feedback 
functions) of interest are of the following form: 

The characteristic polynomial associated with (13) is 

f o ( X )  = 1 + X i  + X i  + X' 

A number of theorems are useful in verifying results and 
reducing the number of cases to be searched. 

THEOREM 1 (REF. 3). E v e q  state of the FSR will have 
a unique predecessor and a unique successor (i.e., the 
cycles will be branchless) if and only if the feedback 
function can be decomposed as follows: 

where F (ak-l, ak-2, -.., ~k- , .+~)  is any Boolean function of 
the content of all stages but r .  All linear feedback func- 
tions are of this form (8). 
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THEOREM 2 (REF. 3). The number of cycles for r > 2 
into which the 2' states of an r-stage F S R  is decomposed 
is even or odd according to whether the number of Is in 
the truth table of F . *, ak.-'+J is even or odd. 
When the feedback function is linear (8), the number of 
cycles is even. 

THEOREM 3 (REF. 10). The number of recurring se- 
quences of length n is 

1 S(n) = - C p(d) PIa 
dln 

The sequences with periods n = 1, 2, 3, and 4 are tabu- 
lated as follows: 

12 S(n> Sequences 

1 2 (0) (1) 

2 1 (01) 

3 2 (001) (011) 

4 3 (0001) (0011) (0111) 

THEOREM 4. (REF. 3). If F ak-,, - - a ,  ak-,l) = F 

. *., ai-, will lie on cycles of the same length, which are 
complementary images of one another, or they will lie 
on the same cycle separated by 180 deg. 

(ai-l, * 1 ., a;-,.+,), states ab1 ak-2, * - a ,  ak-? and akl 

THEOREM 5. A necessary but not suficient condition for 
a tetranomid 1 + xi + xj + x' to have a period 2'-l-1 
is that 

i + i + r 1 mod 2 (14) 

Proof. If fo(x)  = 1 + xi + xi + x' has period 2'-l-1, 
then 

where +(x) is a primitive polynomial of degree r-1. 
Furthermore, 

characterizes the same FSR as (15), where the feedback 
is the complementary mod 2 sum (instead of mod 2 sum) 
and 

The length of the longest cycle from (16) is 

LCM [2.1, 2r-1-1] or 2'-2 

From theorem 3, the FSR associated with (16) and (17) 
has an even number of cycles. Clearly this means there 
can only be two cycles, one of length 2'-2 and one of 
length 2. The only sequence of length 2 is (Ol), and it 
corresponds to the factor (1 + x ) ~  in f l ( x ) .  The two states 
of the length 2 cycle are as follows: 

Stage 1 2 3 4 * * * r k arc 

0 1 0 1 . . * *  0 1  

1 0 1 0 ~ * ~ ~  1 0  

Case 1 r= 0 mod 2 

abi + abj = 1 

Thus 

i + i= 1 mod 2 

r-Omod2 

and i + i + r = 1 mod 2. 

Case2 r = l m o d 2  

Thus 

i + i= 0 mod 2 

r=  1mod2 

and i + i + r =  1mod2. 

Therefore, (14) must be satisfied for a cycle of length 2 
to exist. This does not guarantee that a cycle of length 
2'-2 will also exist. However, it follows that a cycle of 
length 2' -2 cannot exist and +(x) in (15) is not primitive 
if (14) is not satisfied. 

THEOREM 6. A necessary but not wficient condition 
for a tetranomial 1 + xi + x i  + xr to have a period 
2'4-2 is that 
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Proof. If fo(x)  = 1 + xi + x3 + xr has period 2",-2, Therefore, 

i = 2ql - 1 then 

i = 4q2 + 29, + 1 

where 8(x) is a primitive polynomial of degree r-2. 
Furthermore, 

r = 4q, 
and i + i + r = 4(ql + q2 + q3)=Omod4. 

fl(x) = (1 + 4 3  e(x) (20) Case 2 r s l m o d 4  
ak = 1 f ak-2 and ah-,. = ak-1 characterizes the same FSR as (19), where the feedback 

is the complementary mod 2 s u m  (instead of mod 2 sum). Thus 

The length of the longest cycle from (20) is 

LCM [4*1,2r-2-1] =2'-4 

From theorem 3, the FSR associated with (19) has an 
even number of cycles. The complementary mod 2 sum 
feedback cannot yield either of the two possible se- 
quences (0) or (1) of length 1. Thus the remaining four 
states must lie on a cycle of length 4. The factor (1 + x ) ~  
of f,(x) corresponds to the sequence (0011). The four 
states of the length 4 cycle are: 

Stage 1 2 3 4 5 . - . r  k ak 

0 0 1 1 0 - . * -  0 1  

1 0 0 1 1 ~ * ~ ~  1 1  

1 1 0 0 1 * ~ ~ -  2 0  

0 1 1 0 0 . . . *  3 0  

If i - i = 0 mod 4, then ak-i = ak-j. If i - i = 2  mod 4, 
then ak-i = 1 + ak-j = a 

There are four cases to be considered, as follows: 

Case 1 r ~ O m o d 4  

ak = abr = 1 + U B - ~  + G-j + ak-r 

a&+ + a7G-j = 1 

Thus 

i - i ~ 2 m o d 4  

and i and i are both odd or both even. The latter must be 
ruled out since this would mean that 

Solution 1 

i- 1=Omod4 
i - 2 = 0 mod 4 

a n d i + i + r ~ O m o d 4 .  

Solution 2 

i -  1=2mod4 
i - 2=2mod4 

andi + j + r ~ O m o d 4 .  

The foregoing holds for i - i. 
If i = 1, 

ab2 + U b j  = 0 
i - 2 e O m o d 4  

andi  + i + r ~ O m o d 4 .  

If i = 2, 
ab,+ ab3 = 0 
i - 1 ~ O m o d 4  

a n d i + i + r = O m o d 4  

If i = 2, i = 1, since i < i and i + i + r=O mod 4. 

The proof for case 3, where T = 2 mod 4, parallels that 
for case 1. Also the proof for case 4, where r = 3  mod 4, 
parallels that of case 2. 

Thus if (18) is not satisfied, f&) in (19) could not con- 
tain 6(x) as a factor where O(x) is primitive and of degree 
T - 2. 
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The search is further reduced by noting that the period 
of a given tetranomial is the same as that of its reciprocal. 
The tetranomial 

p - 0  + + %r-j + %r-r = + %r-i + x'-j + 1 

is the reciprocal of xr + xi  + xi + 1. Also, cases can be 
discarded where either i, i, or r is a multiple of 3 (say 
i = O  mod 3) and the remaining two exponents are con- 
gruent mod 3 (i.e., i = r  mod 3). When the preceding 
holds, f&) contains 1 + x + x2 as a factor (Ref. 3). 

The results of the search appear in Tables 1 and 2 
through degree 34. 

111. Conclusions 

Tetranomials of the form 

f&) = 1 + xi + xj + X' = '(1 + x)+(x) 
with period 2"I-l exist for every degree r, 4 5 r 5 34, 
with the exception of degree 13. Each of these contains 
+(x) as a factor where +(x) is a primitive polynomial of 
degree r - 1. Dividing each rth-degree tetranomial cor- 
responding to an entry in Table 1 by x + 1 thus yields a 
wmitive polynomial over GF(2) of degree r - 1. Further- 
more a maximal-length PN sequence of period 2"l- 1 
can be generated for every r - 1 (excluding r - 1 = 12), 
with an r-stage three-tap FSR. An initial state of 11 * 10 
yields a PN sequence associated with the characteristic 
polynomial +(x), whereas an initial state of 00 - * . 01 
yields a complementary PN sequence associated with the 
characteristic polynomial (1 + x)  #(x) (see theorem 4). 

Tetranomials of the form 

with periods 2"-l-2 exist for every degree T ,  4 5 r 5 34, 
with the exceptions of degrees 6,8, and 14. Each of these 
contains e(x)  as a factor, where e ( x )  is a primitive poly- 
nomial of degree r - 2. Dividing each rth-degree tetra- 
nomial corresponding to an entry in Table 2 by x2 + 1 
thus yields a primitive polynomial over GF(2) of degree 
T - 2. Furthermore, a sequence of length 2"l-2 can be 
generated for every T - 1 (excluding r - 1 = 5, 7, and 
13). The initial state 00 * * 01 lies on the cycle of length 
2'-1- 2. Two cycles that are complementary images of 

one another correspond to (1 + x) O(x) and e (x ) ,  respec- 
tively. Each yields PN sequences of length 2r-2 - 1. The 
remaining cycles yield two sequences of length 1 : namely, 
(0) and (1) corresponding to (1 + x) and the sequence of 
length 2 corresponding to 1 + x2. 

Example 3. Consider f&) = 1 + x + x2 + x5. The six 
disjoint cycles are tabulated as follows: 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 0 0 0 1  1 0 1 0 1 0  1 
1 0 0 0 0  1 1 0 1 0 1  0 
1 1 0 0 0  0 
0 1 1 0 0  1 
1 0 1 1 0  1 
1 1 0 1 1  1 
1 1 1 0 1  1 
1 1 1 1 0  0 
0 1 1 1 1  0 
0 0 1 1 1  1 
1 0 0 1 1  0 
0 1 0 0 1  0 
0 0 1 0 0  0 
0 0 0 1 0  0 

1 1 0 1 0  0 0 0 1 0 1  1 
0 1 1 0 1  0 1 0 0 1 0  1 
0 0 1 1 0  0 1 1 0 0 1  1 
0 0 0 1 1  1 1 1 1 0 0  0 
1 0 0 0 1  0 0 1 1 1 0  1 
0 1 0 0 0  1 1 0 1 1 1  0 
1 0 1 0 0  1 0 1 0 1 1  0 

0 ~ 0 0 0 0 0  0 1 1 1 1 1  1 

The sequences of length 7 are PN sequences. Note that 

f&) = 1 + x + x2 + x5 

= (1 + x ) Z ( l  + x + x3) 
where q x )  = 1 + x + x3 and is primitive. 

Associated with every r-stage FSR corresponding to 
feedback configurations in Table 2 are complementary 
disjoint cycles of states which yield PN sequences of 
length 2r-2-1 for every T - 2 (excluding T - 2 = 4, 6, 
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12). It may be shown that when r > 4 the initial state 
00 - 0101 results in a go(x) = 1 + x2 and lies on a 
cycle of length 2'-2-1 corresponding to ,e@). The comple- 
mentary state 11 * * 1010 lies on a cycle of length 
2'-2 - 1 (theorem 4) corresponding to (1 + x)e(x). 

A primitiue trinomial does not exist of degree r - 1 
equal to 8, 12, 13, 14, 16, 19, 24, 26, 27, 30, and 32. Tetra- 
nomiab of degree r do exist, however, which contain as 
a factor a primitive polynomial +(x) of degree r - 1 for 
each of the preceding values of r - 1 except 12. 

Table 1. Tetranomials 1 4- xi 4- xi 4- x" with periods 2'-l- 1 

i j r  

1 2 4  

1 3 5  

1 2 6  
2 3  

1 5 7  
2 4  

1 2 8  
1 4  
1 6  
3 4  

2 6 9  
3 5  

2 3 10 
2 5  
3 6  

1 3 11 
2 4  

2 7 12 

1 2 14 
2 5  
2 7  
2 11 
3 4  
4 9  
5 8  

i j r  

3 5 15 
5 7  
8 8  

1 2 16 
1 14 
2 11 
2 13 
3 6  
3 12 
4 5  
4 11 
5 10 
7 8  

1 11 17 
4 10 

1 12 18 
1 14 
2 7  
2 9  
3 8  
4 5  
4 11 
5 6  

1 7 19 
6 12 
7 11 

i j r  

1 14 20 
2 11 
5 14 

1 3 21 
1 11 
3 11 
4 6  
4 12 
6 8  
8 10 

1 8 22 
1 16 
2 9  
3 12 
4 7  
6 9  

1 21 23 
2 8  
2 16 

1 2 24 
1 12 
1 18 
2 15 
2 21 
3 8  
3 16 
3 20 
4 17 
5 12 

i j r  

5 16 24 
6 7  
6 13 
7 14 
8 9  

10 11 

2 14 25 
5 19 
6 14 
8 14 

1 4 26 
1 12 
1 18 
1 22 
2 11 
4 5  
4 15 
5 8  
9 10 
9 12 
9 16 

10 15 

1 5 27 
1 15 
2 6  
3 7  
3 11 
5 13 
6 10 

i j r  

7 11 27 
7 17 

2 5 28 
5 15 
5 22 
6 15 
6 21 

1 17 29 
2 22 
3 15 
3 19 
4 2 4  
8 20 

11 17 

2 13 30 
3 22 
4 11 
4 23 
6 7  
9 16 

11 12 
11 18 

2 12 31 
9 21 

1 4 32 
1 8  
1 14 

i j r  

1 24 32 
1 28 
2 19 
3 4  
3 6  
3 24 
4 15 
4 19 
4 25 
5 20 
6 7  
6 19 
7 8  
7 12 
9 16 
9 18 

10 13 
11 20 
13 14 
13 16 

2 10 33 
4 14 

10 14 
11 19 

1 14 34 
2 11 
2 21 
4 13 
9 14 

13 16 
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Table 2. Tetranomials 1 4- xi 4- xi  + xr with periods 2“l - 2 

i j r  

1 3 4  

1 2 5  

1 4 7  
2 3  

1 2 9  
1 6  

1 5 10 

1 4 11 
3 6  
4 5  

1 3 12 

i j r  

1 2 13 
2 9  
4 7  
5 6  

1 12 15 
2 3  
3 10 
4 5  

1 7 16 

1 14 17 
3 4  
3 12 
6 9  

i j r  

5 9 18 

2 3 19 
2 11 
7 10 

5 7 20 
5 11 

1 2 21 
1 6  
7 12 

1 13 22 
3 15 

2 11 23 

i j r  

2 19 23 
6 7  

1 3 2 4  
5 15 

1 22 25 
3 20 
7 16 
8 15 

1 17 26 
3 19 

1 20 27 
2 3  
9 16 

i j r  

9 15 28 

1 2 29 
1 10 
2 17 
7 16 

13 14 

5 9 30 

1 8 31 
2 27 
3 6  
3 26 
5 2 4  
7 22 
9 12 
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